On a Question of Chung, Diaconis, and Graham

نویسنده

  • Martin Hildebrand
چکیده

Chung, Diaconis, and Graham considered random processes of the form Xn+1 = 2Xn + bn (mod p) where X0 = 0, p is odd, and bn for n = 0, 1, 2, . . . are i.i.d. random variables on {−1, 0, 1}. If Pr(bn = −1) = Pr(bn = 1) = β and Pr(bn = 0) = 1 − 2β, they asked which value of β makes Xn get close to uniformly distributed on the integers mod p the slowest. In this paper, we extend the results of Chung, Diaconis, and Graham in the case p = 2t− 1 to show that for 0 < β ≤ 1/2, there is no such value of β.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Chung-diaconis-graham Random Pro- Cess

Abstract Chung, Diaconis, and Graham considered random processes of the form Xn+1 = 2Xn + bn (mod p) where X0 = 0, p is odd, and bn for n = 0, 1, 2, . . . are i.i.d. random variables on {−1, 0, 1}. If Pr(bn = −1) = Pr(bn = 1) = β and Pr(bn = 0) = 1− 2β, they asked which value of β makes Xn get close to uniformly distributed on the integers mod p the slowest. In this paper, we extend the results...

متن کامل

A lower bound for the Chung-Diaconis-Graham random process

Chung, Diaconis, and Graham considered random processes of the form Xn+1 = anXn + bn (mod p) where p is odd, X0 = 0, an = 2 always, and bn are i.i.d. for n = 0, 1, 2, . . .. In this paper, we show that if P (bn = −1) = P (bn = 0) = P (bn = 1) = 1/3, then there exists a constant c > 1 such that c log2 p steps are not enough to make Xn get close to uniformly distributed on the integers mod p.

متن کامل

Universal cycles for combinatorial structures

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete Mathematics 110 (1992) 43-59 In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.

متن کامل

Universal structures Fan Chung cycles for combinatorial

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete Mathematics 110 (1992) 43-59 In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.

متن کامل

Universal cycles for permutations

A universal cycle for permutations is a word of length n! such that each of the n! possible relative orders of n distinct integers occurs as a cyclic interval of the word. We show how to construct such a universal cycle in which only n + 1 distinct integers are used. This is best possible and proves a conjecture of Chung, Diaconis and Graham.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008